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Abstract – 
Humans, when learning from expert 
demonstrators, often deduce implicit 
features of demonstrations which are 
absent from expert instructions. Such 
features, although not explicitly stated 
by the expert, are vital to achieving the 
task’s goal. In this paper, we aim to 
investigate the presence of various 
implicit features in day-to-day human 
tasks and use an oracle-based system to 
construct a latent representation of 
these demonstrations. Firstly, we define 
features to be extracted from the 
trajectories, such as – intermediate 
points, surface proximity, speed profiles, 
and sharp changes in velocity. 
Subsequently, our system detects the 
presence of these features in new 
demonstrations, which are then 
evaluated and approved by the oracle 
based on their significance in attaining 
the desired trajectory. Our findings show 
that using these features in 
reconstruction of tasks significantly 
improves the accuracy trajectory even 
when features are collected from a single 
demonstration.  

1 Introduction 
 
With the recent increase in deployment of 
robotic systems across industries, there 
arises an essential need to develop 
methods facilitating human to robot 
knowledge transfer, as well as the robots’ 
subsequent adaptation to new, unseen 
environments. Robotic Learning, or the 
process of teaching robots novel skills, 
including adapting to their dynamic 
environment, has been of great interest to 

the scientific community in recent decades. 
Methods such as – Learning from 
Demonstration (LfD) and Imitation Learning 
(Hussein at al. [1]), are being implemented 
to teach robots various household skills. 
Although effective in their approach to 
achieve diverse task-based goals, most of 
these methods focus on transferring entire 
tasks to robots (Kober & Peters [2]; Peters 
et al. [3]). This leads to irrelevant features 
also being transferred to the robot. Such 
features, which were not intended to be 
recorded in the trajectories, often do not 
play any role in achieving the given task and 
tend to over-complicate the learned 
trajectories.​

 
Figure 1: Goal of our work - extracting 
segments of a trajectory which exhibit 

certain predefined features 
 
One approach to address this issue is by 
prioritizing the reconstruction of task 
features rather than the entire task itself. A 
robust system should be able to select and 
omit features from a task representation 
based on their relevance to goal-attainment 
and their potential interference with the 
environment. For example, in the case of 
filling water from a tap, the system should 
be able to infer from expert demonstrations 
that orientation of the glass is irrelevant 
before filling water and becomes relevant 
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after filling water. Thus, before filling water, 
the orientation can be exploited to avoid 
obstacles in unseen environments. Features 
such as orientation-control can be detected 
and utilized to replicate different day-to-day 
tasks, like painting, transporting, and 
opening/closing of doors. 
​
​
Our objective is to extract salient features 
from a single task and solicit user input to 
quantify their relevance. As a result, the 
robot only acquires features relevant for 
attaining the task at hand, while 
disregarding the extraneous ones. This 
methodology ensures that the system 
respects the intrinsic task characteristics  
during execution. Furthermore, it also 
facilitates adaptation to novel environments 
by enabling the identification and 
subsequent dismissal of features, interfering 
with the new environment,   
Our contribution includes the development 
of a system designed to extract diverse, 
predefined features from a single, visual 
task demonstration, and incorporating them 
in a latent  representation to significantly 
improve the task reconstruction. 
​ 

2 Related Work 

2.1 Learning from Demonstration 
Recent years have shown that automation 
of the production cycle has become a major 
goal for many companies, as robots 
become more versatile and cheaper, and 
their use becomes attractive in 
labor-intensive production chains. 
Furthermore, as demand for customized 
products grows, there would be a strong 
shift from large product batches to small 
ones (Kumar et al. [4]). These two trends 
combined lead to the demand of robots that 

learn new tasks quickly and efficiently in 
order to keep up with the changing 
production cycle. The traditional form of 
robot programming stands in the way of this 
change, as people working in production 
often lack the background and also the time 
to implement these changes themselves, 
and experts must provide the code instead. 
Learning skills from demonstrations is 
appealing, since it allows non-experts to 
demonstrate solving the target tasks, 
bypassing the tedium of manually specifying 
these skills or carefully engineering 
solutions to the tasks (Argall et al. [5]). This 
may be accomplished by simply cloning the 
original demonstration (Esmaili et al. [6]), or 
fitting the demonstration to a trajectory 
representation (Kober & Peters [2]; Peters 
et al., [3]) or a policy (Atkeson et al., [7]).  
While our work also falls into the broad 
paradigm of LfD, we use it to extract the 
relevant features rather than the entire 
trajectory. 
 
2.2 Task Segmentation and 
Representation 
In Zoliner et al. [8], a programming by 
demonstration paradigm was deployed to 
represent tasks as sequences of action 
blocks, e.g., [grasp object, move object, .., 
place object]. Our approach is similar to 
these in the sense that we also have a 
pre-defined knowledge base consisting of a 
set of features. 
Conversely, Garg et. al [9] and Murali et. al 
[10] introduce a technique to segment skills 
from a task by training Convolutional Neural 
Networks (CNNs) on visual data to learn 
transition states. Lee et. al. [11] further 
proposes a system of task segmentation, 
which represents tasks as Gaussian Mixture 
Models (GMMs) and segments using 
Principal Component Analysis (PCA).   
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While our system also attempts to segment 
tasks into subtasks (or skills), we solely do 
so by utilizing the intermediary points of a 
task (see section 4.1). Instead of trying to 
segment trajectory into subtasks, our 
system strives to understand the physical 
constraints required by each skill segment, 
for e.g. orientation, speed, and surface 
interaction, rather than the skill itself. This 
approach helps in a finer level of 
abstraction, affording a better control over 
the execution of different segments of the 
trajectory. 
In this work, we follow a pre-programmed 
behavior paradigm, a method typically 
distinct from conventional Robotic Learning 
frameworks in that it lacks any engagement 
with learning structures such as neural 
layers. Our algorithms detect certain task 
features based on the feature’s 
experimentally discerned characteristics. 
Despite its deviation from traditional 
approaches, this method offers numerous 
advantages, primarily highlighted by the 
omission of a learning phase. Consequently, 
implementation is significantly faster, with  
reduced computational resources compared 
to alternative methodologies. 

3 Approach  
 
3.1 Dual quaternions 
Dual Quaternions (Kenwright [12]) are a 
widely used alternative to the traditional 
methods of representing translation and 
rotation such as Euler-Angles, Axis-Angle, 
and Matrices. Each dual quaternion consists 
of two quaternions: the real part and the 
dual part. 

     q   =   qr  +  qd . 𝜺             (1)​

​
 

where qr and qd are the real and dual 
quaternions respectively and 𝜺 is the dual 
operator.  

We also employed dual quaternion in all our 
calculations of object trajectories to simplify 
the computations.  
Advantages of using dual quaternions over 
other representations -  

●​ Singularity-free 
●​ Unified translation and rotation 

representation in a single state. 
●​ Simplified mathematical operations  
●​ Most efficient and compact 

representation 
Due to their more accessible and 
understandable usage, we have used dual 
quaternions throughout our work. 
 
3.2 Detecting Features from 
Demonstrations 
The project is divided into three main 
feature sets - (i) Intermediary point detection, 
(ii) Surface proximity, and (iii) Velocity 
Features. All three features were executed on 
prerecorded trajectories. 
 
3.2.1 Intermediary Point Detection – 
Octree-Based Point Cloud Segmentation  
In recent years, Octree structures have 
been used in compression (Garcia et al. 
[13]) and reconstruction of point clouds 
(Gao et. al [14]). We record a manipulated 
object’s trajectory using AprilTags (Olson et. 
al [15]). We then employ octrees to detect 
interruptions in the object’s trajectory, 
indicating moments when the demonstrator 
halted the manipulation.  
 

 
Figure 2: Binning of point clouds in Octrees 

and Voxel Grids 
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Such a trait is common in tasks such as 
scanning an object at a supermarket 
checkout or filling water from a tap. This 
process consequently also helps in dividing 
the trajectory into smaller sub-trajectories, 
with these intermediary points acting as 
breakpoints. These sub-trajectories are then 
further analyzed for features such as the 
surface proximity and object velocity. 
 
 
 
3.2.2 Surface Proximity -  
The next feature described here aims to 
achieve the detection of a class of tasks 
where the manipulated object stays in close 
proximity to a surface in the environment. 
For example - wiping a surface, writing on 
the blackboard, or painting a wall.  
This approach involved a three-stage 
process. Initially, we record the object’s 
trajectory, executed by the demonstrator. 
Then, we capture the point cloud data of the 
surfaces present in the scene using 
Costinescu et. al [16] and conduct an offline 
computation to determine the 
two-dimensional limits of the surfaces in the 
scene. These limits were then compared 
with the object’s trajectory to assess its 
proximity to the surfaces. 
 

 
 

Figure 3: Workflow of Surface Proximity 
Pipeline 

 

3.2.3 Velocity Features -  
Finally, we also designed a set of features 
to analyze the velocity profile of a trajectory. 
Humans, unknowingly, exhibit certain 
velocity characteristics to aptly achieve 
goals of tasks. Instances such as carrying a 
glass full of water, or writing on paper with a 
pen exemplify our efforts in such scenarios 
to minimize speeds and maintain consistent 
object orientations to achieve the given 
goal. To detect and include these intrinsic 
features in our representation, we set up a 
pipeline to detect five key features –  
‘speed-less-than’, ‘constant speed’, 
‘constant angular velocity’, 
‘accelerating/decelerating speed’, and 
‘constant direction’. A kinematic analysis is 
conducted on the manipulated object’s 
trajectory to detect different velocity features 
(e.g. when the object maintains a constant 
speed) and experiment with parameters 
(e.g. threshold for constant speed) to 
accurately detect the aforementioned 
features. 
 

4 Methodology and 
Implementation 
 
4.1 Intermediary Point detection 
This feature is implemented by first 
capturing the 3d poses of the manipulated 
object throughout its trajectory and then 
converting it into a dense point cloud 
representation. Following this, leveraging an 
Octree structure (see Fig. 4), the entire 
point cloud is segmented by binning into 
voxel grids of predefined sizes. Each voxel 
within the grid represents a single sample or 
data point on a regularly spaced 3D grid. 
Depending on the number of points 
contained in a voxel, a voxel is classified as 
an intermediate point. Through empirical 
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experimentation, the threshold number of 
points in a voxel was determined to be 
approximately 100 points per voxel of side 5 
cm. Furthermore, we also enforce a 
minimum separation distance between two 
identified intermediary points to prevent a 
single point from being misclassified as two 
separate intermediary points. Finally, the 
oracle validates the intended detections 
among the identified points.

 
Figure 4: Detected Intermediary points from 

a trajectory 
One evident fallback with this approach is 
the variability of the threshold number of 
points within a voxel grid, depending on the 
task at hand. As the duration of the pause at 
an intermediary point increases, the density 
of the point cloud within the voxel also 
increases correspondingly.  

 

 
4.2 Surface Proximity​
With the help of [16], we implement the 
detection and rendering of all planar 
surfaces from a frame in the form of a point 
cloud. We further perform a Singular Value 
Decomposition - SVD (Wall et. al [17]) upon 
the point cloud data to determine the value 
of eigenvectors and the directions in which 
each surface extends. Firstly, all data points 
are converted from the camera to the 
ground reference frame. Then, through SVD 
(see equation 2), we obtain the three 
matrices U, Σ, and V. 
 

         M  =  U Σ V*                 (2) ​

 

  ​    Σ = diag(𝝈1, 𝝈2, … 𝝈n)          (3)​

 

​      M M* ui = 𝝈i
2 ui                            (4)​

 

     M* M vi = 𝝈i
2 vi                             (5) 

 

where M is the point cloud data with respect 
to ground frame and M* denotes its 
conjugate transpose, U represents 
eigenvectors of MM*, Σ is a rectangular 
diagonal matrix containing the singular 
values of M, and V represents eigenvectors 
of the matrix M*M. The eigenvectors form 
an orthonormal basis for M. 
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As M ϵ R3xn in our case, we take columns of 
V ϵ R3x3 as the coordinate axis of our 3 
dimensional space. Here, we assume that 
the surface with the maximum number of 
visible points is the primary surface, on 
which the task is being executed. Finally, 
the object location is compared with the 
surface's 3D limits and determines whether 
the object was in close proximity. Figure 5 
shows the surfaces along with their 
eigenvectors. 
 
 
4.3 Velocity Features 
In the final section of our work, we 
implemented 5 features relating to the 
velocity of the manipulated object –  

I.​ Speed less than - Given a  
predefined threshold speed, the pipeline 
returns intervals of the trajectory where the 
speed falls below this threshold. Carrying a 
plate full of food is one such instance where 
it is necessary to keep the speeds below a 
certain value. 

II.​ Constant speed - This section aims  
to identify segments in a trajectory, where 
the object maintains a constant speed. Due 
to the challenge of manually establishing a 
fixed percentage change in speed to denote 
constancy, we afford the oracle discretion to 
specify the percentage change for different 
intervals. This approach provides the oracle 
freedom to define the concept of “constant” 
speed based on individual interpretation. 
Employing a moving average of the object’s 
raw speeds, we mitigate the influence of 
outliers on the detected segments. 
III.​ Constant angular velocity - Similar  

to the methods in Section 4.3 II, the 
detection of limits for constant angular 
velocity is also based on the oracle’s choice 
of the parameters for different intervals. We 
discern the presence of the feature on the 
basis of two criteria. Firstly, whether the axis 

of rotation is being kept constant (see eqn. 
[7]). Secondly, whether the rotation about 
an axis is being kept constant (see eqn. 
[8]). When both criteria fulfill specific 
threshold values, then we say that the 
object maintains a constant angular velocity. 
​

​   𝚫rot  =  qt1, r 
-1  *   qt2, r          (6)​

 
 
 

            𝚫ax  =  quat2ax(qt2, r ) -         
                  quat2ax(qt1, r )                 (7) ​

 
 

     avg_rot = quat2angle(𝚫rot) *     
          quat2ax(qt2, r ) / (t2 - t1)          (8) 

 
 

where qt1,r and qt2,r denote the rotation 
quaternion of the dual quaternions at 
time t1 and t2 respectively. 𝚫ax 
represents the change in axis of 
rotation. quat2angle() and quat2ax() 
are functions which convert quaternion 
notations to axis-angle notation and 
return the angle and axis of the 
quaternion respectively.  
IV.​ Increasing/Decreasing Speed -  

This feature reports the intervals in which 
the object is being accelerated or 
decelerated. 

V.​ Constant Direction - This feature 
seeks to segment instances of the trajectory 
where the object exhibits a constant 
direction. This feature is mainly developed 
to detect instances of shaking motion 
exhibited by the demonstrator, 
characterized by continuous changes in the 
trajectory’s direction. 
 
The workflow of the first three velocity 
features depends on parameters, which 
have been experimentally determined to 
fulfill the requirements of the tested tasks.  
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5 Experiments and Results 
 
5.1 Quantitative Results 
5.1.1 Detecting intermediary points 
To test the accuracy of our pipeline, we 
recorded 10 trajectories from different users 
by asking them to intentionally include 
intermediary points lasting longer than 3 
seconds. Table 1  shows the results in the 
form of a confusion matrix. 

 

 Actual Values 

 
Predicted  

Values 
 

 +ve -ve 

+ve 27 5 

-ve 7 -​  
 

Table 1: Confusion matrix for detection of 
34 intermediary points present in 10 

trajectories​
  

This shows a precision of 84.3% and an 
accuracy of 79.4%. The oracle further is 
queried for the correctness of the detected 
points to obtain the true intermediary points 
of the trajectory. 
 
 
5.1.2 Surface proximity detection 
We also test our surface proximity detection 
module with 10 demonstrations containing 
32 time intervals where the object is in close 
proximity to a surface. The results are 
shown in table 2. This showed a high 
accuracy of 90.6%. In a similar manner to 
the previous section, the predicted 
object-surface proximity time intervals are 

queried to the oracle to confirm their 
correctness.  
 

 Actual Values 

 
Predicted  

Values 
 

 +ve -ve 

+ve 29 - 

-ve 3 -​  
 

Table 2: Confusion matrix for detection of 
32 time intervals consisting of 

object-surface proximities 
 
Note that for each of the above two results, 
we pre-programmed a threshold to decide 
how long an object needs to stay at its 
position to be considered an intermediary 
point and how close the object needs to be to 
the surface for it to be considered in its 
proximity. The above-mentioned accuracies 
could vary depending on the task and the 
threshold set for the specific task by the 
user. 
 
5.1.3 Velocity profile segmentation 
Finally, we conducted similar experiments 
for the 5 segments of the velocity profile. 
 

 Actual Values 

 
Predicted  

Values 
 

 +ve -ve 

+ve 10 - 

-ve 2 -​  
 

Table 3: Confusion matrix for 
speed-less-than detection from 12 true 

values 
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 Actual Values 

 
Predicted  

Values 
 

 +ve -ve 

+ve 7 - 

-ve 4 -​  
 

Table 4: Confusion matrix for 
constant-speed detection from 11 true values 

 

 Actual Values 

 
Predicted  

Values 
 

 +ve -ve 

+ve 4 5 

-ve 5 -​  
 

Table 5: Confusion matrix for 
accelerating/decelerating-speed detection 

from 9 true values 
 

 Actual Values 

 
Predicted  

Values 
 

 +ve -ve 

+ve 6 - 

-ve 5 -​  
 

Table 6: Confusion matrix for 
constant-angular-velocity detections from  

11 true values 
 
The lowest accuracy of 44.4% was 
observed in the accelerating/decelerating 
speed section, whereas the highest of 
83.3% was observed in the 
speed-less-than section. The 
constant-speed section and 
constant-angular-velocity section showed 
accuracies of 63.63% and 54.54% 

respectively. As the last 3 features of 
velocity profiles show very less accuracies 
(avg. 54%), we further test them out with 
simulated trajectories. 
 
It is important to note that throughout our 
work the term “constant” pertains to features 
which remain constant for a fixed duration of 
time, rather than for the entirety of the 
trajectory. This duration was experimentally 
determined to be ~3 seconds for most 
features. 
 
5.2 Simulated Dataset 
We develop a simulated dataset generator. 
The user can specify start pose, and time 
intervals with constant velocity, constant 
acceleration, and constant angular velocity. 
The velocity features on the simulated 
dataset show a 100% confirming the 
correctness of our approach. This means 
that velocity profiles are tough to judge by 
humans and thus recreation of such 
discrete velocity features that can be 
detected is also a difficult task. 
Accelerations display the worst results as 
they can not be very well segmented. 
 
5.3 Limitations 
Our approach provides satisfactory results 
for detection of various skills, when the 
tasks that it observes have features falling 
within the predefined thresholds of the task. 
However, when analyzing a demonstrated 
task the difficulty consists firstly in 
accounting for the large variability that may 
exist between demonstrations and deciding 
what features of the motion should be 
reproduced (extracting task constraints). 
 
One of the biggest disadvantages of this 
approach is that the characteristics are 
defined manually through experiments. This 
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could potentially lead to false 
parametrization, as a single set of 
parameters would not be able to define the 
feature in a very general way. So, the 
selected parameters would provide accurate 
feature detection, only for a limited amount 
of variation in the task. For example, in the 
case of intermediary point detection, it was 
found to be difficult to set a universal point 
per voxel threshold to classify all 
intermediary points in all kinds of tasks. 
Furthermore, also as an oracle, it is tough to 
determine appropriate values for these 
parameters as in the case of 
constant-speed detections. They could vary 
for different tasks, and thus make it tough to 
assign a single value which would be able 
to correctly classify all instances of a feature 
in various tasks.  
 

6 Conclusion and Future Work 

To summarize, through our work we were 
able to segment parts of the trajectory 
containing intermediary points and 
object-surface proximity quite well. Whereas 
there is still room for improvement in 
detection of different velocity profiles. 
 
To further improve our system, we propose 
some developments which could make the 
system more accessible. To begin with, 
some features such as the surface proximity 
detection can be implemented in real time to 
provide live feedback to the user. 
Furthermore, we could optimize the 
parameters for detection of various features. 
At the moment, they were set 
experimentally and can vary depending on 
task and the demonstrator. Finally, we 
would like to incorporate these features with  
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