
Engineering Practice Report

Automatic Extraction of
Relevant Task Features

from Human Demonstrations

15th August 2023

Chaitanya Chawla

Student Number:​ ​ 03741060
Degree Program: ​​ Electrical Engineering and Information Technology
Module:​ ​ ​ [EI0900] Ingenieurpraxis
Supervisors: ​ ​ Prof Dr. -Ing. Darius Burschka and

M.Sc. Andrei Costinescu

Chair of Robotics, AI, and Realtime Systems
Technical University Munich
School of Computation, Information and Technology

Contents:

 Abstract​

1 Introduction​ 2

2 Related Work​ 3
2.1 Learning from Demonstration ​ 3
2.2 Task Segmentation and Representation​ 3
​

3 Approach​ 4
3.1 Dual Quaternions ​ 4
3.2 Detecting Features from Demonstrations​ 4
​

4 Methodology and Implementation​ 5
4.1 Intermediary Point Detection​ 5
4.2 Surface Proximity Detection​ 6
4.3 Velocity Features​ 6

5 Experiments and Results​ 8
5.1 Quantitative Results​ 8
5.2 Simulated Trajectories​ 8
5.3 Limitations​ 9
​

6 Conclusion and Future Work​ 10

Bibliography​ 10

1

Abstract –
Humans, when learning from expert
demonstrators, often deduce implicit
features of demonstrations which are
absent from expert instructions. Such
features, although not explicitly stated
by the expert, are vital to achieving the
task’s goal. In this paper, we aim to
investigate the presence of various
implicit features in day-to-day human
tasks and use an oracle-based system to
construct a latent representation of
these demonstrations. Firstly, we define
features to be extracted from the
trajectories, such as – intermediate
points, surface proximity, speed profiles,
and sharp changes in velocity.
Subsequently, our system detects the
presence of these features in new
demonstrations, which are then
evaluated and approved by the oracle
based on their significance in attaining
the desired trajectory. Our findings show
that using these features in
reconstruction of tasks significantly
improves the accuracy trajectory even
when features are collected from a single
demonstration.

1 Introduction

With the recent increase in deployment of
robotic systems across industries, there
arises an essential need to develop
methods facilitating human to robot
knowledge transfer, as well as the robots’
subsequent adaptation to new, unseen
environments. Robotic Learning, or the
process of teaching robots novel skills,
including adapting to their dynamic
environment, has been of great interest to

the scientific community in recent decades.
Methods such as – Learning from
Demonstration (LfD) and Imitation Learning
(Hussein at al. [1]), are being implemented
to teach robots various household skills.
Although effective in their approach to
achieve diverse task-based goals, most of
these methods focus on transferring entire
tasks to robots (Kober & Peters [2]; Peters
et al. [3]). This leads to irrelevant features
also being transferred to the robot. Such
features, which were not intended to be
recorded in the trajectories, often do not
play any role in achieving the given task and
tend to over-complicate the learned
trajectories.​

Figure 1: Goal of our work - extracting
segments of a trajectory which exhibit

certain predefined features

One approach to address this issue is by
prioritizing the reconstruction of task
features rather than the entire task itself. A
robust system should be able to select and
omit features from a task representation
based on their relevance to goal-attainment
and their potential interference with the
environment. For example, in the case of
filling water from a tap, the system should
be able to infer from expert demonstrations
that orientation of the glass is irrelevant
before filling water and becomes relevant

2

after filling water. Thus, before filling water,
the orientation can be exploited to avoid
obstacles in unseen environments. Features
such as orientation-control can be detected
and utilized to replicate different day-to-day
tasks, like painting, transporting, and
opening/closing of doors.
​
​
Our objective is to extract salient features
from a single task and solicit user input to
quantify their relevance. As a result, the
robot only acquires features relevant for
attaining the task at hand, while
disregarding the extraneous ones. This
methodology ensures that the system
respects the intrinsic task characteristics
during execution. Furthermore, it also
facilitates adaptation to novel environments
by enabling the identification and
subsequent dismissal of features, interfering
with the new environment,
Our contribution includes the development
of a system designed to extract diverse,
predefined features from a single, visual
task demonstration, and incorporating them
in a latent representation to significantly
improve the task reconstruction.
​

2 Related Work

2.1 Learning from Demonstration
Recent years have shown that automation
of the production cycle has become a major
goal for many companies, as robots
become more versatile and cheaper, and
their use becomes attractive in
labor-intensive production chains.
Furthermore, as demand for customized
products grows, there would be a strong
shift from large product batches to small
ones (Kumar et al. [4]). These two trends
combined lead to the demand of robots that

learn new tasks quickly and efficiently in
order to keep up with the changing
production cycle. The traditional form of
robot programming stands in the way of this
change, as people working in production
often lack the background and also the time
to implement these changes themselves,
and experts must provide the code instead.
Learning skills from demonstrations is
appealing, since it allows non-experts to
demonstrate solving the target tasks,
bypassing the tedium of manually specifying
these skills or carefully engineering
solutions to the tasks (Argall et al. [5]). This
may be accomplished by simply cloning the
original demonstration (Esmaili et al. [6]), or
fitting the demonstration to a trajectory
representation (Kober & Peters [2]; Peters
et al., [3]) or a policy (Atkeson et al., [7]).
While our work also falls into the broad
paradigm of LfD, we use it to extract the
relevant features rather than the entire
trajectory.

2.2 Task Segmentation and
Representation
In Zoliner et al. [8], a programming by
demonstration paradigm was deployed to
represent tasks as sequences of action
blocks, e.g., [grasp object, move object, ..,
place object]. Our approach is similar to
these in the sense that we also have a
pre-defined knowledge base consisting of a
set of features.
Conversely, Garg et. al [9] and Murali et. al
[10] introduce a technique to segment skills
from a task by training Convolutional Neural
Networks (CNNs) on visual data to learn
transition states. Lee et. al. [11] further
proposes a system of task segmentation,
which represents tasks as Gaussian Mixture
Models (GMMs) and segments using
Principal Component Analysis (PCA).

3

While our system also attempts to segment
tasks into subtasks (or skills), we solely do
so by utilizing the intermediary points of a
task (see section 4.1). Instead of trying to
segment trajectory into subtasks, our
system strives to understand the physical
constraints required by each skill segment,
for e.g. orientation, speed, and surface
interaction, rather than the skill itself. This
approach helps in a finer level of
abstraction, affording a better control over
the execution of different segments of the
trajectory.
In this work, we follow a pre-programmed
behavior paradigm, a method typically
distinct from conventional Robotic Learning
frameworks in that it lacks any engagement
with learning structures such as neural
layers. Our algorithms detect certain task
features based on the feature’s
experimentally discerned characteristics.
Despite its deviation from traditional
approaches, this method offers numerous
advantages, primarily highlighted by the
omission of a learning phase. Consequently,
implementation is significantly faster, with
reduced computational resources compared
to alternative methodologies.

3 Approach

3.1 Dual quaternions
Dual Quaternions (Kenwright [12]) are a
widely used alternative to the traditional
methods of representing translation and
rotation such as Euler-Angles, Axis-Angle,
and Matrices. Each dual quaternion consists
of two quaternions: the real part and the
dual part.

 q = qr + qd . 𝜺 (1)​

​

where qr and qd are the real and dual
quaternions respectively and 𝜺 is the dual
operator.

We also employed dual quaternion in all our
calculations of object trajectories to simplify
the computations.
Advantages of using dual quaternions over
other representations -

●​ Singularity-free
●​ Unified translation and rotation

representation in a single state.
●​ Simplified mathematical operations
●​ Most efficient and compact

representation
Due to their more accessible and
understandable usage, we have used dual
quaternions throughout our work.

3.2 Detecting Features from
Demonstrations
The project is divided into three main
feature sets - (i) Intermediary point detection,
(ii) Surface proximity, and (iii) Velocity
Features. All three features were executed on
prerecorded trajectories.

3.2.1 Intermediary Point Detection –
Octree-Based Point Cloud Segmentation
In recent years, Octree structures have
been used in compression (Garcia et al.
[13]) and reconstruction of point clouds
(Gao et. al [14]). We record a manipulated
object’s trajectory using AprilTags (Olson et.
al [15]). We then employ octrees to detect
interruptions in the object’s trajectory,
indicating moments when the demonstrator
halted the manipulation.

Figure 2: Binning of point clouds in Octrees

and Voxel Grids

4

Such a trait is common in tasks such as
scanning an object at a supermarket
checkout or filling water from a tap. This
process consequently also helps in dividing
the trajectory into smaller sub-trajectories,
with these intermediary points acting as
breakpoints. These sub-trajectories are then
further analyzed for features such as the
surface proximity and object velocity.

3.2.2 Surface Proximity -
The next feature described here aims to
achieve the detection of a class of tasks
where the manipulated object stays in close
proximity to a surface in the environment.
For example - wiping a surface, writing on
the blackboard, or painting a wall.
This approach involved a three-stage
process. Initially, we record the object’s
trajectory, executed by the demonstrator.
Then, we capture the point cloud data of the
surfaces present in the scene using
Costinescu et. al [16] and conduct an offline
computation to determine the
two-dimensional limits of the surfaces in the
scene. These limits were then compared
with the object’s trajectory to assess its
proximity to the surfaces.

Figure 3: Workflow of Surface Proximity
Pipeline

3.2.3 Velocity Features -
Finally, we also designed a set of features
to analyze the velocity profile of a trajectory.
Humans, unknowingly, exhibit certain
velocity characteristics to aptly achieve
goals of tasks. Instances such as carrying a
glass full of water, or writing on paper with a
pen exemplify our efforts in such scenarios
to minimize speeds and maintain consistent
object orientations to achieve the given
goal. To detect and include these intrinsic
features in our representation, we set up a
pipeline to detect five key features –
‘speed-less-than’, ‘constant speed’,
‘constant angular velocity’,
‘accelerating/decelerating speed’, and
‘constant direction’. A kinematic analysis is
conducted on the manipulated object’s
trajectory to detect different velocity features
(e.g. when the object maintains a constant
speed) and experiment with parameters
(e.g. threshold for constant speed) to
accurately detect the aforementioned
features.

4 Methodology and
Implementation

4.1 Intermediary Point detection
This feature is implemented by first
capturing the 3d poses of the manipulated
object throughout its trajectory and then
converting it into a dense point cloud
representation. Following this, leveraging an
Octree structure (see Fig. 4), the entire
point cloud is segmented by binning into
voxel grids of predefined sizes. Each voxel
within the grid represents a single sample or
data point on a regularly spaced 3D grid.
Depending on the number of points
contained in a voxel, a voxel is classified as
an intermediate point. Through empirical

5

experimentation, the threshold number of
points in a voxel was determined to be
approximately 100 points per voxel of side 5
cm. Furthermore, we also enforce a
minimum separation distance between two
identified intermediary points to prevent a
single point from being misclassified as two
separate intermediary points. Finally, the
oracle validates the intended detections
among the identified points.

Figure 4: Detected Intermediary points from

a trajectory
One evident fallback with this approach is
the variability of the threshold number of
points within a voxel grid, depending on the
task at hand. As the duration of the pause at
an intermediary point increases, the density
of the point cloud within the voxel also
increases correspondingly.

4.2 Surface Proximity​
With the help of [16], we implement the
detection and rendering of all planar
surfaces from a frame in the form of a point
cloud. We further perform a Singular Value
Decomposition - SVD (Wall et. al [17]) upon
the point cloud data to determine the value
of eigenvectors and the directions in which
each surface extends. Firstly, all data points
are converted from the camera to the
ground reference frame. Then, through SVD
(see equation 2), we obtain the three
matrices U, Σ, and V.

 M = U Σ V* (2) ​

 ​ Σ = diag(𝝈1, 𝝈2, … 𝝈n) (3)​

​ M M* ui = 𝝈i
2 ui (4)​

 M* M vi = 𝝈i
2 vi (5)

where M is the point cloud data with respect
to ground frame and M* denotes its
conjugate transpose, U represents
eigenvectors of MM*, Σ is a rectangular
diagonal matrix containing the singular
values of M, and V represents eigenvectors
of the matrix M*M. The eigenvectors form
an orthonormal basis for M.

6

As M ϵ R3xn in our case, we take columns of
V ϵ R3x3 as the coordinate axis of our 3
dimensional space. Here, we assume that
the surface with the maximum number of
visible points is the primary surface, on
which the task is being executed. Finally,
the object location is compared with the
surface's 3D limits and determines whether
the object was in close proximity. Figure 5
shows the surfaces along with their
eigenvectors.

4.3 Velocity Features
In the final section of our work, we
implemented 5 features relating to the
velocity of the manipulated object –

I.​ Speed less than - Given a
predefined threshold speed, the pipeline
returns intervals of the trajectory where the
speed falls below this threshold. Carrying a
plate full of food is one such instance where
it is necessary to keep the speeds below a
certain value.

II.​ Constant speed - This section aims
to identify segments in a trajectory, where
the object maintains a constant speed. Due
to the challenge of manually establishing a
fixed percentage change in speed to denote
constancy, we afford the oracle discretion to
specify the percentage change for different
intervals. This approach provides the oracle
freedom to define the concept of “constant”
speed based on individual interpretation.
Employing a moving average of the object’s
raw speeds, we mitigate the influence of
outliers on the detected segments.
III.​ Constant angular velocity - Similar

to the methods in Section 4.3 II, the
detection of limits for constant angular
velocity is also based on the oracle’s choice
of the parameters for different intervals. We
discern the presence of the feature on the
basis of two criteria. Firstly, whether the axis

of rotation is being kept constant (see eqn.
[7]). Secondly, whether the rotation about
an axis is being kept constant (see eqn.
[8]). When both criteria fulfill specific
threshold values, then we say that the
object maintains a constant angular velocity.
​

​ 𝚫rot = qt1, r
-1 * qt2, r (6)​

 𝚫ax = quat2ax(qt2, r) -
 quat2ax(qt1, r) (7) ​

 avg_rot = quat2angle(𝚫rot) *
 quat2ax(qt2, r) / (t2 - t1) (8)

where qt1,r and qt2,r denote the rotation
quaternion of the dual quaternions at
time t1 and t2 respectively. 𝚫ax
represents the change in axis of
rotation. quat2angle() and quat2ax()
are functions which convert quaternion
notations to axis-angle notation and
return the angle and axis of the
quaternion respectively.
IV.​ Increasing/Decreasing Speed -

This feature reports the intervals in which
the object is being accelerated or
decelerated.

V.​ Constant Direction - This feature
seeks to segment instances of the trajectory
where the object exhibits a constant
direction. This feature is mainly developed
to detect instances of shaking motion
exhibited by the demonstrator,
characterized by continuous changes in the
trajectory’s direction.

The workflow of the first three velocity
features depends on parameters, which
have been experimentally determined to
fulfill the requirements of the tested tasks.

7

5 Experiments and Results

5.1 Quantitative Results
5.1.1 Detecting intermediary points
To test the accuracy of our pipeline, we
recorded 10 trajectories from different users
by asking them to intentionally include
intermediary points lasting longer than 3
seconds. Table 1 shows the results in the
form of a confusion matrix.

 Actual Values

Predicted

Values

 +ve -ve

+ve 27 5

-ve 7 -​

Table 1: Confusion matrix for detection of
34 intermediary points present in 10

trajectories​

This shows a precision of 84.3% and an
accuracy of 79.4%. The oracle further is
queried for the correctness of the detected
points to obtain the true intermediary points
of the trajectory.

5.1.2 Surface proximity detection
We also test our surface proximity detection
module with 10 demonstrations containing
32 time intervals where the object is in close
proximity to a surface. The results are
shown in table 2. This showed a high
accuracy of 90.6%. In a similar manner to
the previous section, the predicted
object-surface proximity time intervals are

queried to the oracle to confirm their
correctness.

 Actual Values

Predicted

Values

 +ve -ve

+ve 29 -

-ve 3 -​

Table 2: Confusion matrix for detection of
32 time intervals consisting of

object-surface proximities

Note that for each of the above two results,
we pre-programmed a threshold to decide
how long an object needs to stay at its
position to be considered an intermediary
point and how close the object needs to be to
the surface for it to be considered in its
proximity. The above-mentioned accuracies
could vary depending on the task and the
threshold set for the specific task by the
user.

5.1.3 Velocity profile segmentation
Finally, we conducted similar experiments
for the 5 segments of the velocity profile.

 Actual Values

Predicted

Values

 +ve -ve

+ve 10 -

-ve 2 -​

Table 3: Confusion matrix for
speed-less-than detection from 12 true

values

8

 Actual Values

Predicted

Values

 +ve -ve

+ve 7 -

-ve 4 -​

Table 4: Confusion matrix for
constant-speed detection from 11 true values

 Actual Values

Predicted

Values

 +ve -ve

+ve 4 5

-ve 5 -​

Table 5: Confusion matrix for
accelerating/decelerating-speed detection

from 9 true values

 Actual Values

Predicted

Values

 +ve -ve

+ve 6 -

-ve 5 -​

Table 6: Confusion matrix for
constant-angular-velocity detections from

11 true values

The lowest accuracy of 44.4% was
observed in the accelerating/decelerating
speed section, whereas the highest of
83.3% was observed in the
speed-less-than section. The
constant-speed section and
constant-angular-velocity section showed
accuracies of 63.63% and 54.54%

respectively. As the last 3 features of
velocity profiles show very less accuracies
(avg. 54%), we further test them out with
simulated trajectories.

It is important to note that throughout our
work the term “constant” pertains to features
which remain constant for a fixed duration of
time, rather than for the entirety of the
trajectory. This duration was experimentally
determined to be ~3 seconds for most
features.

5.2 Simulated Dataset
We develop a simulated dataset generator.
The user can specify start pose, and time
intervals with constant velocity, constant
acceleration, and constant angular velocity.
The velocity features on the simulated
dataset show a 100% confirming the
correctness of our approach. This means
that velocity profiles are tough to judge by
humans and thus recreation of such
discrete velocity features that can be
detected is also a difficult task.
Accelerations display the worst results as
they can not be very well segmented.

5.3 Limitations
Our approach provides satisfactory results
for detection of various skills, when the
tasks that it observes have features falling
within the predefined thresholds of the task.
However, when analyzing a demonstrated
task the difficulty consists firstly in
accounting for the large variability that may
exist between demonstrations and deciding
what features of the motion should be
reproduced (extracting task constraints).

One of the biggest disadvantages of this
approach is that the characteristics are
defined manually through experiments. This

9

could potentially lead to false
parametrization, as a single set of
parameters would not be able to define the
feature in a very general way. So, the
selected parameters would provide accurate
feature detection, only for a limited amount
of variation in the task. For example, in the
case of intermediary point detection, it was
found to be difficult to set a universal point
per voxel threshold to classify all
intermediary points in all kinds of tasks.
Furthermore, also as an oracle, it is tough to
determine appropriate values for these
parameters as in the case of
constant-speed detections. They could vary
for different tasks, and thus make it tough to
assign a single value which would be able
to correctly classify all instances of a feature
in various tasks.

6 Conclusion and Future Work

To summarize, through our work we were
able to segment parts of the trajectory
containing intermediary points and
object-surface proximity quite well. Whereas
there is still room for improvement in
detection of different velocity profiles.

To further improve our system, we propose
some developments which could make the
system more accessible. To begin with,
some features such as the surface proximity
detection can be implemented in real time to
provide live feedback to the user.
Furthermore, we could optimize the
parameters for detection of various features.
At the moment, they were set
experimentally and can vary depending on
task and the demonstrator. Finally, we
would like to incorporate these features with

 ​ REFERENCES
[1] Hussein, A., Gaber, M. M., Elyan, E., &
Jayne, C. (2017). Imitation learning: A survey of
learning methods. ACM Computing Surveys
(CSUR), 50(2), 1-35.

[2] Kober, J., & Peters, J. (2009, May). Learning
motor primitives for robotics. In 2009 IEEE
International Conference on Robotics and
Automation (pp. 2112-2118). IEEE.

[3] Peters, J., Kober, J., Mülling, K., Krämer, O.,
& Neumann, G. (2013). Towards robot skill
learning: From simple skills to table tennis. In
Machine Learning and Knowledge Discovery in
Databases: ECML PKDD 2013.

[4] Kumar A., From mass customization to mass
personalization: A strategic transformation, Int.
J. Flexible Manuf. Syst. 19 (4) (2007) 533–547.

[5] Argall, B. D., Chernova, S., Veloso, M., &
Browning, B. (2009). A survey of robot learning
from demonstration. Robotics and autonomous
systems, 57(5), 469-483.

[6] Esmaili, N., Sammut, C., & Shirazi, G. M.
(1995, October). Behavioural cloning in control
of a dynamic system. In 1995 IEEE International
Conference on Systems, Man and Cybernetics.
Intelligent Systems for the 21st Century (Vol. 3,
pp. 2904-2909). IEEE.

[7] Atkeson, C. G., & Schaal, S. (1997, July).
Robot learning from demonstration. In ICML
(Vol. 97, pp. 12-20).

[8] Zoliner, R., Pardowitz, M., Knoop, S., &
Dillmann, R. (2005, April). Towards cognitive
robots: Building hierarchical task representations
of manipulations from human demonstration. In
Proceedings of the 2005 IEEE International
Conference On Robotics and Automation (pp.
1535-1540). IEEE.

[9] Murali, A., Garg, A., Krishnan, S., Pokorny, F.
T., Abbeel, P., Darrell, T., & Goldberg, K. (2016,
May). Tsc-dl: Unsupervised trajectory

10

segmentation of multi-modal surgical
demonstrations with deep learning. In 2016
IEEE international conference on robotics and
automation (ICRA) (pp. 4150-4157). IEEE.

[10] Garg, A., Krishnan, S., Murali, A., Pokorny,
F. T., Abbeel, P., Darrell, T., & Goldberg, K.
(2015). In NIPS Workshop on Feature
Extraction.

[11] Lee, S. H., Suh, I. H., Calinon, S., &
Johansson, R. (2015). Autonomous framework
for segmenting robot trajectories of manipulation
task. Autonomous robots, 38, 107-141.

[12] Kenwright, B. (2012). A beginners guide to
dual-quaternions: what they are, how they work,
and how to use them for 3D character
hierarchies.

[13] Garcia, Diogo C., et al. "Geometry coding
for dynamic voxelized point clouds using octrees
and multiple contexts." IEEE Transactions on
Image Processing 29 (2019): 313-322.

[14] Gao, X., Shen, H., & Panozzo, D. (2019,
August). Feature preserving octree‐based
hexahedral meshing. In Computer graphics
forum (Vol. 38, No. 5, pp. 135-149).

[15] Olson, E. (2011, May). AprilTag: A robust
and flexible visual fiducial system. In 2011 IEEE
international conference on robotics and
automation (pp. 3400-3407). IEEE.

[16] Andrei Costinescu, Andrei Utils, (2023),
Github Repository​
https://bitbucket.org/andreicostinescu/andreiutils
/src/main/

[17] Wall, M. E., Rechtsteiner, A., & Rocha, L. M.
(2003). Singular value decomposition and
principal component analysis. In A practical
approach to microarray data analysis (pp.
91-109). Boston, MA: Springer US.

11

https://bitbucket.org/andreicostinescu/andreiutils/src/main/
https://bitbucket.org/andreicostinescu/andreiutils/src/main/

	1 Introduction
	2 Related Work
	3 Approach
	4 Methodology and Implementation
	5 Experiments and Results
	6 Conclusion and Future Work
	 ​ REFERENCES

